
PyPNM – Reading, writing and
displaying PPM and PGM images in

pure Python
Introduction
PPM and PGM image formats

PPM (Portable Pixel Map) and PGM (Portable Gray Map) (particular cases of PNM format group)
are simplest file formats for storing RGB and L images as files, correspondingly. This simplicity
lead to some adverse consequences:

1. lack of strict official specification. Instead, you may find words like "usual" in format
description. Surely, there is always someone who implement this part of image format in
unprohibited, yet a totally unusual way.

2. unwillingness of many software developers to provide any good support for simple and
open format. It took years for almighty Adobe Photoshop developers to include PNM
module in distribution rather than count on third-party developers, and surely (see above)
they took their chance to implement a header scheme nobody else uses. What as to PNM
support in Python, say, Pillow, it's often incomplete and requires counterintuitive measures
when dealing with specific data types (like 16-bit per channel).

As a result, novice Python user (like me) may find it difficult to get simple yet reliable input/output
modules for PPM and PGM image files.

Another possible usage of PPM and PGM is displaying images. Tkinter, a widely distributed Python
GUI module, have a possibility to display PPM- and PGM-like objects as images. However, one
should first convert image data from whatever form used for image processing by program to PNM-
like object in memory, and again, it is not too easy to find a simple and ready solution for that.

Therefore, main purpose of PyPNM module is providing suitable facilities for image file reading,
viewing and writing to facilitate writing image filtering and editing programs using Python. So
PyPNM is sort of a bridge between files on a HD and suitable image representation in memory,
converting images forth and back.

General information
Keeping PyPNM main goal (image file bridge) in mind, let us consider image representation in ⇄
computer memory.

https://netpbm.sourceforge.net/doc/pgm.html
https://netpbm.sourceforge.net/doc/ppm.html

Image file: image’s part⇄
There is some sort of consensus between image editing software developers regarding RGB image
coordinate system:

Pixel [0][0] of an RGB image

Coordinate origin is top left, and color channels, starting from 0, have red, green, blue order.

The most logical image representation using Python data types is a 3D nested list, i.e. an RGB pixel
is a list of channels [r, g, b], pixels are combined into row list of pixels [[r, g, b], [r, g, b], [r, g, b]],
and rows are combined into image list of rows [[[r, g, b], [r, g, b], [r, g, b]], [[r, g, b], [r, g, b], [r, g,
b]]].

It is important to remember that PyPNM is supposed to work with one standard image
representation. That is, images of all types are supposed to have the forementioned
list[list[list[int]]] data type. There are no exception, and I mean it: even a greyscale
(L) pixel is supposed to be a list of channels. It’s just a list of one channel, but it’s still a list. This
approach allows using the same y, x, z loop for processing any image type instead of developing
different algorithms for different image types.

Image file: file’s part⇄
PyPNM compatibility with different PNM file formats is summarized below.

Image format File format Read Write

16 bits per channel RGB P6 Binary PPM ✅ ✅

P3 ASCII PPM ✅ ✅

8 bits per channel RGB P6 Binary PPM ✅ ✅

P3 ASCII PPM ✅ ✅

16 bits per channel L P5 Binary PGM ✅ ✅

P2 ASCII PGM ✅ ✅

8 bits per channel L P5 Binary PGM ✅ ✅

P2 ASCII PGM ✅ ✅

1 bit ink on/off P4 Binary PBM ✅ ❌

P1 ASCII PBM ✅ ❌

Note that PyPNM provides PBM files reading, but not writing, since 1 bit per channel images are
next to useless for image editing in general – most of image processing algorithms simply do not
work with them. So the same reason, when reading PBM file, PyPNM promotes image from 1 bit
ink on/off to 8 bit L, turning PBM “1” to image “0” and PBM “0” to image “255”, that is, keeping
black and white in different color model. As a result, PBM turns into PGM when reading with
PyPNM.

PyPNM download

There are several download options for PyPNM, summarized below:

Download site PyPNM version Content

Git main Current main version (Python 3.10
and above)

PyPNM module and sample viewer
application, illustrating all reading,
displaying and writing functions in
action.

Git .34 Extended compatibility version
(Python 3.4 and above)

PyPNM module and sample viewer
application, illustrating all reading,
displaying and writing functions in
action. Viewer in .34 version include
PNG support via PyPNG. PyPNG is
not a part of PyPNM and included
here because it's a rare case of
format support for Python 3.4,
allowing to add viewer multiformat
reading and conversion support.

PyPI PyPI package PyPNM module only, for
developers. Version match Git.34
unless otherwise stated.

Note that .34 version (made compatible with earlier versions of Python) is functionally equivalent
to main Git branch, but at some update stages misses some internal optimizations and stuff. This is
due to the fact that .34 version passes testing under real Python 3.4 on Windows XP machine, which
takes additional time. From a developer point of view, .34 version misses type hints and other
modern stuff simplifying development and usage, and uses rather ugly .join combinations instead of
elegant f-strings. Main functions and their arguments, however, are the same for moth versions.

PyPNM functions
PyPNM contains a set of functions, included into main pnmlpnm.py (“pnm-list-pnm”) file. PyPNM
may be installed via different methods.

Automated installation with pip:

pip install pypnm

Also, you may acquire PyPNM some other way, for example, from Github, and simply place
pypnm folder under your main program folder. In both cases, further usage of PyPNM will begin
with

from pypnm import pnmlpnm

which gives you access to all functions, contained in the module. Functions usage is discussed
below.

https://github.com/Dnyarri/PyPNM
https://pypi.org/project/PyPNM/
https://gitlab.com/drj11/pypng
https://github.com/Dnyarri/PyPNM/tree/py34
https://github.com/Dnyarri/PyPNM

pnm2list

pnm2list is a function for reading PPM/PGM file from disk to 3D nested list (image) in memory for
image processing. Usage example:

X, Y, Z, maxcolors, image3D = pnmlpnm.pnm2list(sourcefilename)

where:

X, Y, Z: image dimensions (int). X and Y are image width and height in pixels, respectively; Z is
the number of channels, 1 for L and 3 for RGB images.

Actually, image dimensions may be detected from image3D lengths, but they are needed so often
that it's cheaper to have them exported together with image data.

maxcolors: number of colors per channel for current image (int). Typically its either 255 or
65535 for 8 bpc and 16 bpc images respectively; while other values are not deliberately prohibited
by the specification, they are unlikely to be used in actual files. Note that? unlike X, Y and X,
maxcolors cannot be logically decided from pixel data so this is required variable.

image3D: image pixel data as list(list(list(int))). Note that this structure is used for all image
modes, i.e. for L images a pixel is represented as a list of 1 int value, not as just int.

sourcefilename: PPM/PGM input file name (str).

list2bin

list2bin is a function for converting 3D nested list (image) in memory to PNM-like bytes object in
memory. Usage example:

preview_data = pnmlpnm.list2bin(image3D, maxcolors,
show_chessboard=True)

where:

image3D: Y * X * Z list (image) of lists (rows) of lists (pixels) of ints (channel values);

maxcolors: number of colors per channel for current image (int);

show_chessboard: optional bool, set `True` to show LA and RGBA images against chessboard
pattern; `False` or missing show existing L or RGB data for transparent areas as opaque. Default is
`False` for backward compatibility.

preview_data: PNM-structured binary data.

Note that preview_data above is a bytes object, in-memory copy of PPM/PGM file. To be
shown with Tkinter, it should be further converted to PhotoImage object:

preview = PhotoImage(data=preview_data)

followed by showing PhotoImage as part of Label, Button etc (see Attachment).

Image modes, alpha channel and show_chessboard

list2bin function takes any number Z of image channels as input, but skips any channel with number
higher than 3 (that is, anything above 4-th channel, which correspond to alpha in RGBA). Images
with 1 channel (channel number 0) and 3 channels are treated as L and RGB, correspondingly.
Images with 2 and 4 channels are treated as LA and RGBA images, correspondingly, that is, channel
number 1 or 3 is considered as alpha channel, and list2bin tries to simulate transparency for it.
However, PNM format does not support transparency. As a workaround, list2bin may simulate
transparent image preview over chessboard, similar to Photoshop or GIMP, by premixing image
data with artificially generated chess pattern and then generating bytes of such a chess-containing
PNM. This behaviour is controlled with show_chessboard bool, which is set to False (i.e., skip

alpha) by default for backward compatibility reasons. With show_chessboard set True, list2bin
generates chessboard as described above and passes the result to display as shown below:

Example of viewer window showing 16 bpc LA image

Note that chessboard pattern is generated algorithmically by list2bit, its size and color, chosen to
match Photoshop default “Medium Light” preview, are not controlled by any option in current
PyPNM, so edit PyPNM source is you want to change it.

Keep in mind that, while primary goal of this function is showing image data, it may be used for
visualizing any other data (e.g., some purely artificial functions etc.) as soon as data fit rectagular
nested list and may be mapped to integer in, say, 0..255 range.

list2pnm

list2pnm is a function for converting 3D nested list (image) in memory to binary PNM file on disk.
Usage example:

pnmlpnm.list2pnm(savefilename, image3D, maxcolors)

where:

image3D: X * Y * Z list (image) of lists (rows) of lists (pixels) of ints (channels);

maxcolors: number of colors per channel for current image (int);

savefilename: resulting PNM file name.

Note that while byte structure of list2bin output in memory and list2pnm output on disk match, the
functions themselves are different because list2pnm tries to reduce memory usage by generating
PNM bytes per image row and immediately flushing every row to HD, while list2bin must fully
assemble and place whole PNM bytes object into memory anyway.

list2pnmascii

list2pnmascii is a function for converting 3D nested list (image) in memory to ASCII PNM file on
disk. Usage example:

pnmlpnm.list2pnmascii(savefilename, image3D, maxcolors)

where:

image3D: X * Y * Z list (image) of lists (rows) of lists (pixels) of ints (channels);

maxcolors: number of colors per channel for current image (int);

savefilename: resulting PNM file name.

As can be seen, arguments for list2pnmascii are the same as for list2pnm.

create_image

create_image function creates 3D image list, filled with zeroes. This function is unnecessary for
working with PNM files, but often needed for working with images, so it appears to be suitable to
have it at hand. Usage example:

empty = pnmlpnm.create_image(X, Y, Z)

where:

empty: list of zeroes having X, Y, Z size.

This is the end of PyPNM functions to date.

References
1. Netpbm file formats description .

2. PyPNM at PyPI - installing PyPN with pip. Does not contain viewer example etc., only core
converter, but provides regular pip-driven automated updates.

3. PyPNM main at Github containing example viewer application, illustrating using list2bin to
produce data for Tkinter PhotoImage(data=...) to display, as well as opening/saving various
portable map formats.

4. PyPNM for Python 3.4 at Github containing example viewer application, illustrating using
list2bin to produce data for Tkinter PhotoImage(data=...) to display, as well as
opening/saving various portable map formats. This particular version was tested and shown
to work under Python 3.4, Windows XP. This particular distribution also contain PyPNG,
providing universal pure Python viewer and converter for PNG and all flavour of PGM and
PPM.

5. Dnyarri website - other Python freeware by the same author.

https://dnyarri.github.io/
https://github.com/Dnyarri/PyPNM/tree/py34
https://github.com/Dnyarri/PyPNM/
https://pypi.org/project/PyPNM/
https://netpbm.sourceforge.net/doc/

Attachment
PyPNM demo

Below is very short demo program, illustrating all PyPNM functions – opening PPM as image,
writing obtained image as binary PPM, writing obtained image as ASCII PPM, and displaying
image with Tkinter. This program requires 'example.ppm' source file (not included into current
document) to exist in program directory. Note that resulting files are unlikely to be byte-identical to
source file: first, PyPNM never writes unnecessary info like comments, second, as for an ASCII
files, PyPNM opinion regarding safe formatting may differ from other software one.

#!/usr/bin/env python3

from tkinter import Button, PhotoImage, Tk

from pypnm import pnmlpnm

X, Y, Z, maxcolors, image3D = pnmlpnm.pnm2list('example.ppm') # Open

pnmlpnm.list2pnm('binary.ppm', image3D, maxcolors) # Save as binary

pnmlpnm.list2pnmascii('ascii.ppm', image3D, maxcolors) # Save as ascii

main_window = Tk()

main_window.title('PyPNM demo')

preview_data = pnmlpnm.list2bin(image3D, maxcolors) # Generating preview bytes
from list

preview = PhotoImage(data=preview_data) # Generating preview object from bytes

preview_button = Button(main_window, text='Example\n(click to exit)',

 image=preview, compound='top', command=lambda: main_window.destroy())

preview_button.pack()

main_window.mainloop()

	Introduction
	PPM and PGM image formats

	General information
	Image ⇄ file: image’s part
	Image ⇄ file: file’s part
	PyPNM download

	PyPNM functions
	pnm2list
	list2bin
	Image modes, alpha channel and show_chessboard

	list2pnm
	list2pnmascii
	create_image

	References
	Attachment
	PyPNM demo

